Extended fuzzy background modeling for moving vehicle detection using infrared vision

نویسندگان

  • Boon Chin Yeo
  • Way-Soong Lim
  • Heng Siong Lim
  • Wai Kit Wong
چکیده

Running average is a simple and effective background modeling method that generates adaptive background image for moving object detection. Fuzzy Running Average (FRA) improves the selectivity of Standard Running Average (SRA). However, its background restoration rate is slow. This leads to false object detection when a static object becomes dynamic. To overcome this problem, an Extended Fuzzy Running Average (EFRA) is proposed. The results show that the EFRA not only retains the selectivity benefit of FRA, but also improves the restoration rate significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrotor UAV Guidence For Ground Moving Target Tracking

The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...

متن کامل

Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems

vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...

متن کامل

An Algorithm for Moving Vehicle Detection and Tracking Based on Adaptive Background Modeling

In modern traffic surveillance, computer vision methods have commonly been utiliezed to detect vehicles because of the rich information content contained in an image. And detection and tracking of moving vehicle in traffic environment is one of the most important components in intelligent transportation system (ITS). The adaptive background modeling method was used to eliminate the negative eff...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Vision - based Path Estimation for the Navigation of Autonomous Electric Vehicle

Making an Autonomous Electric Vehicle (AEV) and able to operate “unmanned” requires extensive theoretical as well as practical knowledge. An AEV must be able to make decisions and respond to situations completely on its own. Buggy car are used a as Electric Vehicle (EV) and set up with several equipment and sensor as an AEV. A camera is installed in front of the AEV and is used to obtain image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Electronic Express

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2011